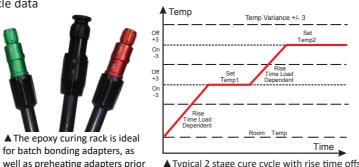


Auditor Omega Programable Curing Rack

Designed primarily for OEM club manufacturers to bench mark the suitability of structural epoxy adhesives in shafting golf clubs under a production environment. The Auditor Omega Digital Epoxy Cure System provides both the control and accuracy needed to develop unique curing profiles that drastically cut down handling time between assembly steps without compromising optimal adhesive performance.

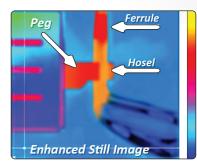
The two stage curing process greatly benefits most two part epoxy adhesives where the first stage provides sufficient kinetic energy to quickly initiate the chemical reaction. The second stage's high temperature cure cycle promotes high density cross linking of the reactants to achieve the best possible mechanical properties.

Stages 1 & 2 are controlled by the Auditor Omega proportional time and temperature controller which constantly monitors and adjusts its firing rate, bringing the heating rail to the target temperature quickly while optimizing soak time within a narrow band not exceeding +/- 3°C.


To assist process engineers and lab technicians develop, test and bench mark cure profiles, the Auditor Omega features a bi-directional upload/download function with cure cycle data recording capability.

Kev Features:

- -Programable temperature controller with excellent accuracy.
- -On board memory for 10 user defined adhesive curing profiles.
- -USB Upload & download of curing profiles.
- -Handles 1 hour cure cycle at 50~200 °C / 122~392°F per step.
- -Holds up to 7 clubs, allowing ample spacing between clubs.
- -Powerful, 500W sealed heater cartridge.
- -Data collection & programming software included.
- -Compact wall mount installation reduces footprint!



▲ The epoxy curing rack is ideal

for batch bonding adapters, as

to shaft extraction

▲ Typical 2 stage cure cycle with rise time offset to ensure adequate soak time at target temperature

▲ Thermal imaging shows heat transfer path and temperature distribution